We propose a Monte-Carlo-based method for reconstructing sparse signals in the formulation of sparse linear regression in a high-dimensional setting. The basic idea of this algorithm is to explicitly select variables or covariates to represent a given data vector or responses and accept randomly generated updates of that selection if and only if the energy or cost function decreases. This algorithm is called the greedy Monte-Carlo (GMC) search algorithm. Its performance is examined via numerical experiments, which suggests that in the noiseless case, GMC can achieve perfect reconstruction in undersampling situations of a reasonable level: it can outperform the $\ell_1$ relaxation but does not reach the algorithmic limit of MC-based methods theoretically clarified by an earlier analysis. The necessary computational time is also examined and compared with that of an algorithm using simulated annealing. Additionally, experiments on the noisy case are conducted on synthetic datasets and on a real-world dataset, supporting the practicality of GMC.


翻译:我们提出一种基于蒙特-卡洛的重建高维环境中微小线性回归的微弱信号的方法。这种算法的基本想法是明确选择变量或共变来代表特定数据矢量或响应,并在能量或成本功能下降时接受随机生成的选择更新。这种算法被称为贪婪的蒙特-卡洛(GMC)搜索算法。它的性能通过数字实验来审查,它表明在无噪音的情况下,GMC可以在没有噪音的情况下在合理水平的抽样情况中实现完美的重建:它可以超过$\ell_1美元,但不能达到早期分析从理论上澄清的以MC为基础的方法的算法极限。必要的计算时间也经过审查,并与使用模拟Annealing算法的算法进行比较。此外,关于噪音案例的实验是在合成数据集和真实世界数据集上进行的,支持GMC的实用性。

0
下载
关闭预览

相关内容

【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
医疗知识图谱构建与应用
专知会员服务
384+阅读 · 2019年9月25日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月21日
Arxiv
0+阅读 · 2021年3月19日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员