We consider the problem of statistical inference in a parametric finite Markov chain model and develop a robust estimator of the parameters defining the transition probabilities via minimization of a suitable (empirical) version of the popular density power divergence. Based on a long sequence of observations from a first-order stationary Markov chain, we have defined the minimum density power divergence estimator (MDPDE) of the underlying parameter and rigorously derived its asymptotic and robustness properties under appropriate conditions. Performance of the MDPDEs is illustrated theoretically as well as empirically for some common examples of finite Markov chain models. Its applications in robust testing of statistical hypotheses are also discussed along with (parametric) comparison of two Markov chain sequences. Several directions for extending the MDPDE and related inference are also briefly discussed for multiple sequences of Markov chains, higher order Markov chains and non-stationary Markov chains with time-dependent transition probabilities. Finally, our proposal is applied to analyze corporate credit rating migration data of three international markets.
翻译:我们考虑了参数限定的Markov链条模型中的统计推断问题,并制定了一个强有力的参数估计标准,该参数通过尽量减少流行密度差的合适(经验)版本来界定过渡概率。我们根据一阶固定的Markov链条的一长串观测结果,确定了基本参数的最低密度差值估计值(MDPDE),并在适当条件下严格推算其无症状和稳健性特性。MDPDEs的性能在理论上和实验上都说明了有限的Markov链条模型的一些共同例子的性能。该模型在严格测试统计假设时的应用也与两个Markov链条的(参数)比较一起讨论。关于扩展MDPDE和相关的推论的若干方向也简要讨论了马尔科夫链的多个序列、更高排序的Markov链条和具有时间性过渡概率的非静止的Markov链。最后,我们的建议用于分析三个国际市场的公司信用移徙评级数据。