Reconstructing a 3D hand from a single-view RGB image is challenging due to various hand configurations and depth ambiguity. To reliably reconstruct a 3D hand from a monocular image, most state-of-the-art methods heavily rely on 3D annotations at the training stage, but obtaining 3D annotations is expensive. To alleviate reliance on labeled training data, we propose S2HAND, a self-supervised 3D hand reconstruction network that can jointly estimate pose, shape, texture, and the camera viewpoint. Specifically, we obtain geometric cues from the input image through easily accessible 2D detected keypoints. To learn an accurate hand reconstruction model from these noisy geometric cues, we utilize the consistency between 2D and 3D representations and propose a set of novel losses to rationalize outputs of the neural network. For the first time, we demonstrate the feasibility of training an accurate 3D hand reconstruction network without relying on manual annotations. Our experiments show that the proposed method achieves comparable performance with recent fully-supervised methods while using fewer supervision data.


翻译:从单视 RGB 图像重建三维手具有挑战性,因为手形和深度模糊。 要从单视图像中可靠地从单视图像重建三维手, 多数最先进的方法在培训阶段在很大程度上依赖三维说明, 但获得三维说明的费用非常昂贵。 为了减轻对标签培训数据的依赖, 我们提议S2HAND, 一个自我监督的三维手重建网络, 它可以共同估计形状、 形状、 纹理和相机视图。 具体地说, 我们从输入图像中获得几何提示, 通过容易获得的 2D 探测到的关键点。 要从这些吵闹的几何提示中学习准确的手重建模型, 我们利用 2D 和 3D 表达方式的一致性, 并提出一系列新的损失, 以使神经网络的产出合理化。 我们第一次展示了培训准确的三维手重建网络的可行性, 而不用人工说明。 我们的实验显示, 所提议的方法在使用更少的监督数据的同时, 能够与最近完全超过的方法取得相似的性能 。

1
下载
关闭预览

相关内容

3D是英文“Three Dimensions”的简称,中文是指三维、三个维度、三个坐标,即有长、有宽、有高,换句话说,就是立体的,是相对于只有长和宽的平面(2D)而言。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡一分钟】基于3D激光雷达地图的立体相机定位
泡泡机器人SLAM
4+阅读 · 2019年1月14日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
5+阅读 · 2018年12月18日
VIP会员
相关资讯
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡一分钟】基于3D激光雷达地图的立体相机定位
泡泡机器人SLAM
4+阅读 · 2019年1月14日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员