COVID-19 related misinformation and fake news, coined an 'infodemic', has dramatically increased over the past few years. This misinformation exhibits concept drift, where the distribution of fake news changes over time, reducing effectiveness of previously trained models for fake news detection. Given a set of fake news models trained on multiple domains, we propose an adaptive decision module to select the best-fit model for a new sample. We propose MiDAS, a multi-domain adaptative approach for fake news detection that ranks relevancy of existing models to new samples. MiDAS contains 2 components: a doman-invariant encoder, and an adaptive model selector. MiDAS integrates multiple pre-trained and fine-tuned models with their training data to create a domain-invariant representation. Then, MiDAS uses local Lipschitz smoothness of the invariant embedding space to estimate each model's relevance to a new sample. Higher ranked models provide predictions, and lower ranked models abstain. We evaluate MiDAS on generalization to drifted data with 9 fake news datasets, each obtained from different domains and modalities. MiDAS achieves new state-of-the-art performance on multi-domain adaptation for out-of-distribution fake news classification.
翻译:与COVID-19相关的误传和假新闻在过去几年中产生了“信息化”的发现,在过去几年中,这种误传的物证概念发生了急剧增加。这种误传的物证概念漂移,随着时间推移传播假新闻变化,降低了以前训练的假新闻探测模型的有效性。鉴于一套在多个领域培训的假新闻模型,我们提议了一个适应性决定模块,为新样本选择最适合的模型。我们提出了MIDASS,这是一种将现有模型与新样本相提并论的假新闻探测的多位适应性适应性方法。MIDAS包含两个组成部分:一个Doman-invariant 编码器和一个适应性模型选择者。MIDAS将多个预先培训和经过精细调整的模型与培训数据整合到它们的培训数据中,以创建域变量代表。然后,MIDAS使用本地的Lipschitz 嵌入空间的光滑度来估计每个模型与新样本的相关性。高等级模型提供预测,低级模式不相干。我们评价了MIDAS的通用数据流传数据,包括9个来自不同领域和模式的假数据集的多域和模式。MIDAS实现新状态业绩的MIDAS。