Several supervised networks exist that remove haze information from underwater images using paired datasets and pixel-wise loss functions. However, training these networks requires large amounts of paired data which is cumbersome, complex and time-consuming. Also, directly using adversarial and cycle consistency loss functions for unsupervised learning is inaccurate as the underlying mapping from clean to underwater images is one-to-many, resulting in an inaccurate constraint on the cycle consistency loss. To address these issues, we propose a new method to remove haze from underwater images using unpaired data. Our model disentangles haze and content information from underwater images using a Haze Disentanglement Network (HDN). The disentangled content is used by a restoration network to generate a clean image using adversarial losses. The disentangled haze is then used as a guide for underwater image regeneration resulting in a strong constraint on cycle consistency loss and improved performance gains. Different ablation studies show that the haze and content from underwater images are effectively separated. Exhaustive experiments reveal that accurate cycle consistency constraint and the proposed network architecture play an important role in yielding enhanced results. Experiments on UFO-120, UWNet, UWScenes, and UIEB underwater datasets indicate that the results of our method outperform prior art both visually and quantitatively.
翻译:暂无翻译