Deep learning (DL) methods where interpretability is intrinsically considered as part of the model are required to better understand the relationship of clinical and imaging-based attributes with DL outcomes, thus facilitating their use in the reasoning behind medical decisions. Latent space representations built with variational autoencoders (VAE) do not ensure individual control of data attributes. Attribute-based methods enforcing attribute disentanglement have been proposed in the literature for classical computer vision tasks in benchmark data. In this paper, we propose a VAE approach, the Attri-VAE, that includes an attribute regularization term to associate clinical and medical imaging attributes with different regularized dimensions in the generated latent space, enabling a better-disentangled interpretation of the attributes. Furthermore, the generated attention maps explained the attribute encoding in the regularized latent space dimensions. Using the Attri-VAE approach we analyzed healthy and myocardial infarction patients with clinical, cardiac morphology, and radiomics attributes. The proposed model provided an excellent trade-off between reconstruction fidelity, disentanglement, and interpretability, outperforming state-of-the-art VAE approaches according to several quantitative metrics. The resulting latent space allowed the generation of realistic synthetic data in the trajectory between two distinct input samples or along a specific attribute dimension to better interpret changes between different cardiac conditions.
翻译:深度学习(DL)方法,其中将可解释性视为模型的一部分,是为了更好地了解临床和成象性属性与DL结果之间的关系,从而便于在医学决定的推理中加以使用; 由变式自动对立器(VAE)建造的低端空间表示并不能确保个人对数据属性的控制; 文献中为基准数据中的经典计算机视觉任务提出了基于属性分解法的方法。 在本文中,我们提议了一种VAE方法,即Attri-VAE, 其中包括一个属性正规化术语,将临床和成像性属性与生成的潜层的不同常规层面联系起来,从而便于对属性进行更好的分解解释; 此外,产生的注意图解释了在常规潜在空间层面中存在的属性编码; 使用我们用临床、心脏形态学和放射学特性分析的健康和心心肌病人的分类方法。 拟议的模型在重建忠诚、分解和可解释性能之间提供了一种极好的平衡性术语,从而能够对生成的VAE值进行更好的分辨解释; 在不同的合成模型中,允许在不同的合成模型中,在不同的合成模型中进行不同的合成模型中进行更好的分析。