This paper introduces Bayesian uncertainty modeling using Stochastic Weight Averaging-Gaussian (SWAG) in Natural Language Understanding (NLU) tasks. We apply the approach to standard tasks in natural language inference (NLI) and demonstrate the effectiveness of the method in terms of prediction accuracy and correlation with human annotation disagreements. We argue that the uncertainty representations in SWAG better reflect subjective interpretation and the natural variation that is also present in human language understanding. The results reveal the importance of uncertainty modeling, an often neglected aspect of neural language modeling, in NLU tasks.
翻译:本文在自然语言理解(NLU)任务中引入了基于Bayesian不确定性建模的Stochastic Weight Averaging-Gaussian(SWAG)方法。我们将该方法应用于自然语言推理(NLI)的标准任务中,并证明了该方法在预测准确性和与人类注释不一致性的相关性方面的有效性。我们认为SWAG中的不确定性表示更好地反映了主观解释以及人类语言理解中存在的自然变异。结果揭示了在NLU任务中经常被忽视的神经语言建模中不确定性建模的重要性。