We develop the contour integral method for numerically solving the Feynman-Kac equation with two internal states [P. B. Xu and W. H. Deng, Math. Model. Nat. Phenom., 13 (2018), 10], describing the functional distribution of particle's internal states. The striking benefits are obtained, including spectral accuracy, low computational complexity, small memory requirement, etc. We perform the error estimates and stability analyses, which are confirmed by numerical experiments.
翻译:我们发展了Contour积分方法以数值求解描述粒子内部状态的功能分布的具有两个内部状态的Feynman-Kac方程 [P. B. Xu 和 W. H. Deng, Math. Model. Nat. Phenom., 13 (2018), 10]。其显著的优势包括光谱精度、低计算复杂度、较小存储需求等等。我们进行误差估计和稳定性分析,结果得到了数值实验的验证。