Stability and optimal convergence analysis of a non-uniform implicit-explicit L1 finite element method (IMEX-L1-FEM) is studied for a class of time-fractional linear partial differential/integro-differential equations with non-self-adjoint elliptic part having (space-time) variable coefficients. The proposed scheme is based on a combination of an IMEX-L1 method on graded mesh in the temporal direction and a finite element method in the spatial direction. With the help of a discrete fractional Gr\"{o}nwall inequality, optimal error estimates in $L^2$- and $H^1$-norms are derived for the problem with initial data $u_0 \in H_0^1(\Omega)\cap H^2(\Omega)$. Under higher regularity condition $u_0 \in \dot{H}^3(\Omega)$, a super convergence result is established and as a consequence, $L^\infty$ error estimate is obtained for 2D problems. Numerical experiments are presented to validate our theoretical findings.
翻译:暂无翻译