We introduce Explanatory Learning (EL), a framework to let machines use existing knowledge buried in symbolic sequences -- e.g. explanations written in hieroglyphic -- by autonomously learning to interpret them. In EL, the burden of interpreting symbols is not left to humans or rigid human-coded compilers, as done in Program Synthesis. Rather, EL calls for a learned interpreter, built upon a limited collection of symbolic sequences paired with observations of several phenomena. This interpreter can be used to make predictions on a novel phenomenon given its explanation, and even to find that explanation using only a handful of observations, like human scientists do. We formulate the EL problem as a simple binary classification task, so that common end-to-end approaches aligned with the dominant empiricist view of machine learning could, in principle, solve it. To these models, we oppose Critical Rationalist Networks (CRNs), which instead embrace a rationalist view on the acquisition of knowledge. CRNs express several desired properties by construction, they are truly explainable, can adjust their processing at test-time for harder inferences, and can offer strong confidence guarantees on their predictions. As a final contribution, we introduce Odeen, a basic EL environment that simulates a small flatland-style universe full of phenomena to explain. Using Odeen as a testbed, we show how CRNs outperform empiricist end-to-end approaches of similar size and architecture (Transformers) in discovering explanations for novel phenomena.
翻译:我们引入了解释性学习(EL), 这个框架让机器使用以象征性序列埋藏的现有知识 -- -- 例如以象形文字写的解释 -- -- 通过自主学习来解释这些符号。 在 EL 中,解释符号的负担不会像程序合成那样留给人类或僵硬的人类编码编纂者。 相反, EL 要求有一位知识化的解释者, 建立在有限的象征性序列集合之上, 并伴有对若干现象的观察。 这个解释者可以用来根据它的解释来对一种新现象做出预测, 甚至可以找到这种解释, 仅仅使用少量的观察来进行解释, 像人类科学家那样。 我们把EL 问题设计成简单的二元分类任务, 以便共同的端对端方法与机器学习的主导性共选点观相一致, 原则上可以解决这个问题。 对于这些模型, 我们反对临界的逻辑论网络, 而不是在获取知识时接受理性主义的观点。 CRNs通过构建表达一些预想的特性, 它们可以真正解释, 可以调整它们在测试时的处理过程, 以更难的直观的直观的奥式解释。