Markov chain Monte Carlo (MCMC) methods are simulated by local exploration of complex statistical distributions, and while bypassing the cumbersome requirement of a specific analytical expression for the target, this stochastic exploration of an uncertain parameter space comes at the expense of a large number of samples, and this computational complexity increases with parameter dimensionality. Although at the exploration level, some methods are proposed to accelerate the convergence of the algorithm, such as tempering, Hamiltonian Monte Carlo, Rao-redwellization, and scalable methods for better performance, it cannot avoid the stochastic nature of this exploration. We consider the target distribution as a mapping where the infinite-dimensional Eulerian space of the parameters consists of a number of deterministic submanifolds and propose a generalized energy metric, termed weighted Riesz energy, where a number of points is generated through pairwise interactions, to discretize rectifiable submanifolds. We study the properties of the point, called Riesz particle, and embed it into sequential MCMC, and we find that there will be higher acceptance rates with fewer evaluations, we validate it through experimental comparative analysis from a linear Gaussian state-space model with synthetic data and a non-linear stochastic volatility model with real-world data.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Simulation Based Bayesian Optimization
Arxiv
0+阅读 · 2024年1月19日
Arxiv
0+阅读 · 2024年1月19日
Arxiv
18+阅读 · 2022年11月21日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
14+阅读 · 2018年5月15日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Simulation Based Bayesian Optimization
Arxiv
0+阅读 · 2024年1月19日
Arxiv
0+阅读 · 2024年1月19日
Arxiv
18+阅读 · 2022年11月21日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
14+阅读 · 2018年5月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员