Multi-modal clustering, which explores complementary information from multiple modalities or views, has attracted people's increasing attentions. However, existing works rarely focus on extracting high-level semantic information of multiple modalities for clustering. In this paper, we propose Contrastive Multi-Modal Clustering (CMMC) which can mine high-level semantic information via contrastive learning. Concretely, our framework consists of three parts. (1) Multiple autoencoders are optimized to maintain each modality's diversity to learn complementary information. (2) A feature contrastive module is proposed to learn common high-level semantic features from different modalities. (3) A label contrastive module aims to learn consistent cluster assignments for all modalities. By the proposed multi-modal contrastive learning, the mutual information of high-level features is maximized, while the diversity of the low-level latent features is maintained. In addition, to utilize the learned high-level semantic features, we further generate pseudo labels by solving a maximum matching problem to fine-tune the cluster assignments. Extensive experiments demonstrate that CMMC has good scalability and outperforms state-of-the-art multi-modal clustering methods.


翻译:多模式集群探索多种模式或观点的补充信息,吸引了人们越来越多的注意力;然而,现有工作很少侧重于提取关于多种组合模式的高层次语义信息;在本文件中,我们提议通过对比性学习,对高层次语义信息进行反向多式组合(CMMC),通过高层次语义信息进行开采;具体地说,我们的框架由三个部分组成:(1) 多自动分类器得到优化,以保持每种模式的多样性,从而学习补充信息;(2) 提出一个特征对比性模块,以学习不同模式的共同高层次语义特征;(3) 标签对比性模块,旨在学习所有模式的一致集群任务;通过拟议的多模式对比性学习,高层次特征的相互信息得到最大化,同时保持低层次潜在特征的多样性;此外,为了利用学到的高层次语义特征,我们还通过解决最大程度的匹配问题来改进集群任务,产生假标签。

0
下载
关闭预览

相关内容

专知会员服务
88+阅读 · 2021年6月29日
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
77+阅读 · 2021年1月30日
专知会员服务
39+阅读 · 2020年9月6日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
【ICML2020】多视角对比图表示学习,Contrastive Multi-View GRL
专知会员服务
79+阅读 · 2020年6月11日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
【推荐系统/计算广告/机器学习/CTR预估资料汇总】
专知会员服务
87+阅读 · 2019年10月21日
【AAAI2021】对比聚类,Contrastive Clustering
专知
25+阅读 · 2021年1月30日
对比学习(Contrastive Learning)相关进展梳理
PaperWeekly
10+阅读 · 2020年5月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
二值多视角聚类:Binary Multi-View Clustering
我爱读PAMI
4+阅读 · 2018年6月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
7+阅读 · 2020年10月9日
Arxiv
5+阅读 · 2020年10月2日
Arxiv
31+阅读 · 2020年9月21日
Arxiv
7+阅读 · 2020年8月7日
VIP会员
相关VIP内容
专知会员服务
88+阅读 · 2021年6月29日
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
77+阅读 · 2021年1月30日
专知会员服务
39+阅读 · 2020年9月6日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
【ICML2020】多视角对比图表示学习,Contrastive Multi-View GRL
专知会员服务
79+阅读 · 2020年6月11日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
【推荐系统/计算广告/机器学习/CTR预估资料汇总】
专知会员服务
87+阅读 · 2019年10月21日
相关资讯
【AAAI2021】对比聚类,Contrastive Clustering
专知
25+阅读 · 2021年1月30日
对比学习(Contrastive Learning)相关进展梳理
PaperWeekly
10+阅读 · 2020年5月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
二值多视角聚类:Binary Multi-View Clustering
我爱读PAMI
4+阅读 · 2018年6月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员