In reacting flow systems, thermoacoustic instability characterized by high amplitude pressure fluctuations, is driven by a positive coupling between the unsteady heat release rate and the acoustic field of the combustor. When the underlying flow is turbulent, as a control parameter of the system is varied and the system approach thermoacoustic instability, the acoustic pressure oscillations synchronize with heat release rate oscillations. Consequently, during the onset of thermoacoustic instability in turbulent combustors, the system dynamics transition from chaotic oscillations to periodic oscillations via a state of intermittency. Thermoacoustic systems are traditionally modeled by coupling the model for the unsteady heat source and the acoustic subsystem, each estimated independently. The response of the unsteady heat source, the flame, to acoustic fluctuations are characterized by introducing external unsteady forcing. This necessitates a powerful excitation module to obtain the nonlinear response of the flame to acoustic perturbations. Instead of characterizing individual subsystems, we introduce a neural ordinary differential equation (neural ODE) framework to model the thermoacoustic system as a whole. The neural ODE model for the thermoacoustic system uses time series of the heat release rate and the pressure fluctuations, measured simultaneously without introducing any external perturbations, to model their coupled interaction. Further, we use the parameters of neural ODE to define an anomaly measure that represents the proximity of system dynamics to limit cycle oscillations and thus provide an early warning signal for the onset of thermoacoustic instability.


翻译:在对流系统的反应中,以高振幅压力波动为特征的热振动不稳定性,是由不稳定的热释放率和组合的声场之间正相混合的。当基流动荡时,由于系统的控制参数各不相同,系统接近热声不稳定,声压振动与热释放率振动同步。因此,在动荡的梳子中,热振动不稳定开始时,系统动力动力从混乱的振动变异到通过中间状态的周期性振动。当基流动荡时,由于系统控制参数各不相同,且系统接近热振动不稳定时,声振动压力振动与热释放率的振动同步同步。因此,在热振动波动开始发生时,需要强大的振动模块,以获得调动火焰的非线性反应。对于单个子的特征化而言,我们采用一个不固定的温度变异变的系统,因此,温度变变变的系统(神经振动)框架可以提供温度变的模型。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
专知会员服务
115+阅读 · 2019年12月24日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
10分钟搞懂反向传播| Neural Networks #13
AI研习社
3+阅读 · 2018年1月7日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
专知会员服务
115+阅读 · 2019年12月24日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
10分钟搞懂反向传播| Neural Networks #13
AI研习社
3+阅读 · 2018年1月7日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员