Indoor motion planning focuses on solving the problem of navigating an agent through a cluttered environment. To date, quite a lot of work has been done in this field, but these methods often fail to find the optimal balance between computationally inexpensive online path planning, and optimality of the path. Along with this, these works often prove optimality for single-start single-goal worlds. To address these challenges, we present a multiple waypoint path planner and controller stack for navigation in unknown indoor environments where waypoints include the goal along with the intermediary points that the robot must traverse before reaching the goal. Our approach makes use of a global planner (to find the next best waypoint at any instant), a local planner (to plan the path to a specific waypoint), and an adaptive Model Predictive Control strategy (for robust system control and faster maneuvers). We evaluate our algorithm on a set of randomly generated obstacle maps, intermediate waypoints, and start-goal pairs, with results indicating a significant reduction in computational costs, with high accuracies and robust control.
翻译:室内规划侧重于解决通过杂乱的环境导航代理物的问题。 到目前为止,在这一领域已经做了大量工作,但这些方法往往未能在计算成本低廉的在线路径规划与路径的最佳性之间找到最佳平衡。 与此同时,这些工作往往证明对单一启动的单一目标世界来说是最佳的。为了应对这些挑战,我们提出了一个多路点路径规划师和控制员堆叠,用于在未知的室内环境中航行,在这些环境中,路点包括机器人在实现目标之前必须穿越的中间点。我们的方法利用了全球规划师(在任何时刻找到下一个最佳路径点 ) 、 本地规划师(规划通往特定路径的路径 ) 和适应性模型预测控制战略( 用于强有力的系统控制和快速操作 ) 。 我们评估了一套随机生成的障碍图、 中间路径和起始目标对的算法,其结果显示计算成本大幅降低, 并具有高度的准确性和稳健的控制。