Due to increasing popularity and strict performance requirements, online games have become a workload of interest for the performance engineering community. One of the most popular types of online games is the Minecraft-like Game (MLG), in which players can terraform the environment. The most popular MLG, Minecraft, provides not only entertainment, but also educational support and social interaction, to over 130 million people world-wide. MLGs currently support their many players by replicating isolated instances that support each only up to a few hundred players under favorable conditions. In practice, as we show here, the real upper limit of supported players can be much lower. In this work, we posit that performance variability is a key cause for the lack of scalability in MLGs. We propose a novel operational model for MLGs and use it to design the first benchmark that focuses on MLG performance variability, defining specialized workloads, metrics, and processes. We conduct real-world benchmarking of MLGs and find environment-based workloads and cloud deployment to be significant sources of performance variability: peak-latency degrades sharply to 20.7 times the arithmetic mean, and exceeds by a factor of 7.4 the performance requirements. We derive actionable insights for game-developers, game-operators, and other stakeholders to tame performance variability.


翻译:由于受欢迎程度的提高和严格的绩效要求,在线游戏已成为表演工程界感兴趣的工作量。最受欢迎的在线游戏类型之一是“像地雷一样的游戏 ” ( MLG ), 球员可以在游戏中改变环境。最受欢迎的 MLG, Minecraft, 不仅为全世界超过1.3亿人提供娱乐, 而且还提供教育支持和社会互动。 MLG 目前通过复制孤立的例子来支持其众多的球员,这些例子只在有利的条件下支持每个球员达几百个球员。 实际上,正如我们在这里所显示的那样, 得到支持的球员的真正上限可以大大降低。 在这项工作中,我们假设, 性能变异性是MLG 缺乏适应环境的关键原因。 我们为MLG 提出了一个全新的操作模式, 不仅提供娱乐, 而且还提供教育支持和社会互动。 MLG 目前在设计第一个以MLG 表现变异性为重点的基准时, 定义了专门的工作量、 尺度和程序。 我们进行现实世界的MLG 基准, 并发现基于环境的工作量和云的部署是业绩变异性的重要来源: 最慢的温度将急剧降至20.7倍于游戏的视野, 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月11日
Arxiv
0+阅读 · 2023年4月8日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员