This paper investigates why it is beneficial, when solving a problem, to search in the neighbourhood of a current solution. The paper identifies properties of problems and neighbourhoods that support two novel proofs that neighbourhood search is beneficial over blind search. These are: firstly a proof that search within the neighbourhood is more likely to find an improving solution in a single search step than blind search; and secondly a proof that a local improvement, using a sequence of neighbourhood search steps, is likely to achieve a greater improvement than a sequence of blind search steps. To explore the practical impact of these properties, a range of problem sets and neighbourhoods are generated, where these properties are satisfied to different degrees. Experiments reveal that the benefits of neighbourhood search vary dramatically in consequence. Random problems of a classical combinatorial optimisation problem are analysed, in order to demonstrate that the underlying theory is reflected in practice.


翻译:本文探讨了在解决当前解决方案的周围寻找问题是否有益。本文件指出了问题和邻里的特点,支持了两个新的证据,即邻里搜索比盲人搜索更有益。这些证据是:第一,证明邻里搜索比盲人搜索更有可能在单一搜索步骤中找到更好的解决办法;第二,证明使用邻里搜索步骤的顺序,本地改进可能比盲人搜索步骤的顺序得到更大的改进。为了探究这些属性的实际影响,产生了一系列问题和邻里,这些特性在不同程度上得到满足。实验表明邻里搜索的好处因此大相径庭。分析了典型组合优化问题的随机问题,以证明基本理论在实践中得到了反映。

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员