VIP内容

摘要: 约束优化问题广泛存在于科学研究和工程实践中,其对应的约束优化进化算法也成为了进化领域的重要研究方向。约束优化进化算法的本质问题是如何有效地利用不可行解和可行解的信息,平衡目标函数和约束条件,使得算法更加高效。首先对约束优化问题进行定义;然后详细分析了目前主流的约束进化算法,同时,基于不同的约束处理机制,将这些机制分为约束和目标分离法、惩罚函数法、多目标优化法、混合法和其他算法,并对这些方法进行了详细的分析和总结;接着指出约束进化算法亟待解决的问题,并明确指出未来需要进一步研究的方向;最后对约束进化算法在工程优化、电子和通信工程、机械设计、环境资源配置、科研领域和管理分配等方面的应用进行了介绍。

http://www.jsjkx.com/CN/10.11896/jsjkx.200600151

成为VIP会员查看完整内容
0
14

热门内容

In the last years, Artificial Intelligence (AI) has achieved a notable momentum that may deliver the best of expectations over many application sectors across the field. For this to occur, the entire community stands in front of the barrier of explainability, an inherent problem of AI techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI. Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is acknowledged as a crucial feature for the practical deployment of AI models. This overview examines the existing literature in the field of XAI, including a prospect toward what is yet to be reached. We summarize previous efforts to define explainability in Machine Learning, establishing a novel definition that covers prior conceptual propositions with a major focus on the audience for which explainability is sought. We then propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at Deep Learning methods for which a second taxonomy is built. This literature analysis serves as the background for a series of challenges faced by XAI, such as the crossroads between data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to XAI with a reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability.

1
42
下载
预览

最新内容

Several recent works [40, 24] observed an interesting phenomenon in neural network pruning: A larger finetuning learning rate can improve the final performance significantly. Unfortunately, the reason behind it remains elusive up to date. This paper is meant to explain it through the lens of dynamical isometry [42]. Specifically, we examine neural network pruning from an unusual perspective: pruning as initialization for finetuning, and ask whether the inherited weights serve as a good initialization for the finetuning? The insights from dynamical isometry suggest a negative answer. Despite its critical role, this issue has not been well-recognized by the community so far. In this paper, we will show the understanding of this problem is very important -- on top of explaining the aforementioned mystery about the larger finetuning rate, it also unveils the mystery about the value of pruning [5, 30]. Besides a clearer theoretical understanding of pruning, resolving the problem can also bring us considerable performance benefits in practice.

0
0
下载
预览

最新论文

Several recent works [40, 24] observed an interesting phenomenon in neural network pruning: A larger finetuning learning rate can improve the final performance significantly. Unfortunately, the reason behind it remains elusive up to date. This paper is meant to explain it through the lens of dynamical isometry [42]. Specifically, we examine neural network pruning from an unusual perspective: pruning as initialization for finetuning, and ask whether the inherited weights serve as a good initialization for the finetuning? The insights from dynamical isometry suggest a negative answer. Despite its critical role, this issue has not been well-recognized by the community so far. In this paper, we will show the understanding of this problem is very important -- on top of explaining the aforementioned mystery about the larger finetuning rate, it also unveils the mystery about the value of pruning [5, 30]. Besides a clearer theoretical understanding of pruning, resolving the problem can also bring us considerable performance benefits in practice.

0
0
下载
预览
Top