While neural architecture search (NAS) has enabled automated machine learning (AutoML) for well-researched areas, its application to tasks beyond computer vision is still under-explored. As less-studied domains are precisely those where we expect AutoML to have the greatest impact, in this work we study NAS for efficiently solving diverse problems. Seeking an approach that is fast, simple, and broadly applicable, we fix a standard convolutional network (CNN) topology and propose to search for the right kernel sizes and dilations its operations should take on. This dramatically expands the model's capacity to extract features at multiple resolutions for different types of data while only requiring search over the operation space. To overcome the efficiency challenges of naive weight-sharing in this search space, we introduce DASH, a differentiable NAS algorithm that computes the mixture-of-operations using the Fourier diagonalization of convolution, achieving both a better asymptotic complexity and an up-to-10x search time speedup in practice. We evaluate DASH on NAS-Bench-360, a suite of ten tasks designed for benchmarking NAS in diverse domains. DASH outperforms state-of-the-art methods in aggregate, attaining the best-known automated performance on seven tasks. Meanwhile, on six of the ten tasks, the combined search and retraining time is less than 2x slower than simply training a CNN backbone that is far less accurate.
翻译:虽然神经结构搜索(NAS)已经为研究周密的地区实现了自动机器学习(Automal),但其应用于计算机视野之外的任务的应用仍然未得到充分探索。由于研究较少的领域恰恰是我们期望Automal产生最大影响的领域,我们在这项工作中研究NAS,以有效解决各种问题。我们寻求一种快速、简单和广泛适用的方法,我们设置了一个标准革命网络(CNN)的表层,并提议在实际操作中寻找正确的骨干内核尺寸和放大。这极大地扩大了模型在多种分辨率上提取不同类型数据的功能的能力,而只需搜索操作空间即可。为了克服在这一搜索空间天真的重量共享所带来的效率挑战,我们引入了DASASH,这是一种不同的NAS-Bench-360算法,它利用四面分化法来计算操作的混合操作,它既要达到较慢的神经骨干复杂性,又要加快到10层的搜索时间。我们在NAS-BS-360上评估了DS-BS-360的深度搜索能力,这是在最不那么多的AS-SAS-SAS-10级任务中设计的一种最不那么完善的10级标准。