We analyze the convergence of the $k$-opinion Undecided State Dynamics (USD) in the population protocol model. For $k$=2 opinions it is well known that the USD reaches consensus with high probability within $O(n \log n)$ interactions. Proving that the process also quickly solves the consensus problem for $k>2$ opinions has remained open, despite analogous results for larger $k$ in the related parallel gossip model. In this paper we prove such convergence: under mild assumptions on $k$ and on the initial number of undecided agents we prove that the USD achieves plurality consensus within $O(k n \log n)$ interactions with high probability, regardless of the initial bias. Moreover, if there is an initial additive bias of at least $\Omega(\sqrt{n} \log n)$ we prove that the initial plurality opinion wins with high probability, and if there is a multiplicative bias the convergence time is further improved. Note that this is the first result for $k > 2$ for the USD in the population protocol model. Furthermore, it is the first result for the unsynchronized variant of the USD with $k>2$ which does not need any initial bias.
翻译:我们分析了人口协议模式中未确定的国家动态(美元)的趋同情况。 对于 美元=2 的意见,众所周知美元在美元(n\log n) 的相互作用中极有可能达成共识。 证明这一过程也迅速解决了美元(k>2) 意见的协商一致问题, 尽管相关平行八卦模式中较大美元(k) 的类似结果仍然是开放的。 在本文中,我们证明这种趋同:根据对美元和未确定代理人的最初数目的轻度假设,我们证明美元在美元(kn\log n) 的相互作用中实现了高度的多元共识,而不论最初的偏差如何。 此外,如果最初的添加偏差至少是$\Omega(sqrt{n}\log n) 美元,我们证明最初的多元意见是极有可能赢得的,如果存在多重偏差,那么合并时间就会进一步改善。 注意这是美元人口协议模式中美元($) 的首次结果, 美元 > 2美元(k) 和美元的最初的偏差并不需要。</s>