We present a translation from linear temporal logic with past to deterministic Rabin automata. The translation is direct in the sense that it does not rely on intermediate non-deterministic automata, and asymptotically optimal, resulting in Rabin automata of doubly exponential size. It is based on two main notions. One is that it is possible to encode the history contained in the prefix of a word, as relevant for the formula under consideration, by performing simple rewrites of the formula itself. As a consequence, a formula involving past operators can (through such rewrites, which involve alternating between weak and strong versions of past operators in the formula's syntax tree) be correctly evaluated at an arbitrary point in the future without requiring backtracking through the word. The other is that this allows us to generalize to linear temporal logic with past the result that the language of a pure-future formula can be decomposed into a Boolean combination of simpler languages, for which deterministic automata with simple acceptance conditions are easily constructed.
翻译:暂无翻译