Scaling up language models has been empirically shown to improve performance and unlock emergent abilities. Conversely, observing worse performance as a function of scale ("inverse scaling") would indicate that scaling encourages behaviors that are misaligned with human preferences. The Inverse Scaling Prize identified eleven such inverse scaling tasks, evaluated on models of up to 280B parameters and up to 500 zettaFLOPs of training compute. This paper takes a closer look at these inverse scaling tasks. We evaluate models of up to 540B parameters, trained on five times more compute than those evaluated in the Inverse Scaling Prize. With this increased range of model sizes and training compute, ten out of the eleven tasks exhibit what we call "U-shaped scaling" -- performance decreases up to a certain model size, and then increases again up to the largest model evaluated. U-shaped scaling can be seen as emergent ability unlocked by scaling and implies that inverse scaling may not hold for larger models.
翻译:增强语言模型的扩展已被经验显示, 以改善性能和释放突发能力。 相反, 观察更差的性能作为规模函数( “ 反向缩放 ” ) 将表明, 缩放会鼓励与人类偏好不相符的行为。 反向缩放奖确定了11项反向缩放任务, 评估了最多可达280B 参数的模型和500 zettaFLOP 的培训计算。 本文对这些反向缩放任务进行了更仔细的审视。 我们评估了最多540B 参数的模型, 其计算能力比反向缩放奖中评估的要高5倍。 随着模型大小和培训计算范围扩大, 十项任务中10项展示了我们称之为“ U 形缩放” 的功能, 表现会降至一定的模型大小, 然后又再次提升到所评估的最大模型。 U 缩放的缩放可以被视为通过缩放来解开的出现的能力, 意味着反向缩放可能无法维持较大的模型。