All fields of science depend on mathematical models. One of the fundamental problems with using complex nonlinear models is that data-driven parameter estimation often fails because interactions between model parameters lead to multiple parameter sets fitting the data equally well. Here, we develop a new method to address this problem, FixFit, which compresses a given mathematical model's parameters into a latent representation unique to model outputs. We acquire this representation by training a neural network with a bottleneck layer on data pairs of model parameters and model outputs. The bottleneck layer nodes correspond to the unique latent parameters, and their dimensionality indicates the information content of the model. The trained neural network can be split at the bottleneck layer into an encoder to characterize the redundancies and a decoder to uniquely infer latent parameters from measurements. We demonstrate FixFit in two use cases drawn from classical physics and neuroscience.


翻译:FixFit:使用参数压缩解决超定模型反问题 翻译后的摘要: 科学的所有领域都依赖于数学模型。使用复杂的非线性模型的一个基本问题是,数据驱动的参数估计经常会失败,因为模型参数之间的相互作用会导致多个参数集等效地拟合数据。在这里,我们开发了一种新的方法来解决这个问题,使用FixFit来压缩给定数学模型的参数到模型输出的唯一潜在表示。我们通过使用带有瓶颈层的神经网络对模型参数和模型输出的数据对进行训练来获取这个表示。瓶颈层节点对应于唯一的潜在参数,它们的维数表示模型的信息内容。训练好的神经网络可以在瓶颈层上分解成用于表征冗余的编码器和用于从测量中唯一推断潜在参数的解码器。我们在经典物理学和神经科学中演示了FixFit的两个用例。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月16日
Arxiv
0+阅读 · 2023年5月12日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员