The aim of Inverse Reinforcement Learning (IRL) is to infer a reward function $R$ from a policy $\pi$. To do this, we need a model of how $\pi$ relates to $R$. In the current literature, the most common models are optimality, Boltzmann rationality, and causal entropy maximisation. One of the primary motivations behind IRL is to infer human preferences from human behaviour. However, the true relationship between human preferences and human behaviour is much more complex than any of the models currently used in IRL. This means that they are misspecified, which raises the worry that they might lead to unsound inferences if applied to real-world data. In this paper, we provide a mathematical analysis of how robust different IRL models are to misspecification, and answer precisely how the demonstrator policy may differ from each of the standard models before that model leads to faulty inferences about the reward function $R$. We also introduce a framework for reasoning about misspecification in IRL, together with formal tools that can be used to easily derive the misspecification robustness of new IRL models.


翻译:逆强化学习(IRL)的目标是从一个策略$π$中推断出奖励函数$R$。为此,我们需要一个$\pi$与$R$之间关系的模型。在当前文献中,最常见的模型是最优性、Boltzmann合理性和因果熵最大化。IRL背后的主要动机之一是从人类行为中推断出人类偏好。然而,人类偏好与人类行为之间的真实关系比IRL当前使用的任何模型都要复杂得多。这意味着它们是错误指定的,这引发了一个担忧,即如果将其应用于现实世界的数据中,它们可能会导致不合理的推断。在本文中,我们提供了对不同IRL模型对错误指定的鲁棒性如何的数学分析,并回答了每个标准模型的展示者策略可能与之有何不同,才会导致关于奖励函数$R$的错误推断。我们还引入了一个关于IRL中错误指定的推理框架,以及可以用于轻松推导新IRL模型的错误指定鲁棒性的正式工具。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
因果关联学习,Causal Relational Learning
专知会员服务
182+阅读 · 2020年4月21日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年5月16日
Arxiv
27+阅读 · 2023年2月10日
Arxiv
12+阅读 · 2023年1月19日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员