In this paper, we propose a novel mutual consistency network (MC-Net+) to effectively exploit the unlabeled data for semi-supervised medical image segmentation. The MC-Net+ model is motivated by the observation that deep models trained with limited annotations are prone to output highly uncertain and easily mis-classified predictions in the ambiguous regions (e.g., adhesive edges or thin branches) for medical image segmentation. Leveraging these challenging samples can make the semi-supervised segmentation model training more effective. Therefore, our proposed MC-Net+ model consists of two new designs. First, the model contains one shared encoder and multiple slightly different decoders (i.e., using different up-sampling strategies). The statistical discrepancy of multiple decoders' outputs is computed to denote the model's uncertainty, which indicates the unlabeled hard regions. Second, we apply a novel mutual consistency constraint between one decoder's probability output and other decoders' soft pseudo labels. In this way, we minimize the discrepancy of multiple outputs (i.e., the model uncertainty) during training and force the model to generate invariant results in such challenging regions, aiming at regularizing the model training. We compared the segmentation results of our MC-Net+ model with five state-of-the-art semi-supervised approaches on three public medical datasets. Extension experiments with two standard semi-supervised settings demonstrate the superior performance of our model over other methods, which sets a new state of the art for semi-supervised medical image segmentation. Our code is released publicly at https://github.com/ycwu1997/MC-Net.
翻译:在本文中,我们提议建立一个新型的相互一致性网络(MC-Net+),以有效地利用非标签数据进行半监督医疗图像分割。 MC- Net+ 模型的动机是观察到经过有限注释训练的深模型容易在模糊区域(如粘合边缘或薄枝)为医学图像分割而产出高度不确定和容易错误分类的预测。 利用这些具有挑战性的样本可以提高半监督的半监督的分解模型培训的实效。 因此, 我们提议的MC- Net+ 模型由两种新设计组成。 首先, 模型包含一个共享的编码和多个稍有差异的解码器( 即使用不同的上调战略 ) 。 多解码器产出的统计差异是用来表示模型的不确定性, 这表明没有标记的硬区域。 其次, 我们对这些具有挑战性的模型/ 模型的概率输出与其他分解码的分解码的软缩缩缩版标签之间, 以这种方式, 我们最大限度地缩小了多种产出的差异( i.e., 模型+ ) 高级网络的设置 和多个解算器的解算方法 。 在培训过程中, 在常规数据结构中, 我们的模型中, 以常规数据分析结果中, 我们的模型- 将数据结构 与常规数据结构 与我们的数据分析中, 我们的模型- 与常规数据转换取取取取取取结果产生。