Forecasting water content dynamics in heterogeneous porous media has significant interest in hydrological applications; in particular, the treatment of infiltration when in presence of cracks and fractures can be accomplished resorting to peridynamic theory, which allows a proper modeling of non localities in space. In this framework, we make use of Chebyshev transform on the diffusive component of the equation and then we integrate forward in time using an explicit method. We prove that the proposed spectral numerical scheme provides a solution converging to the unique solution in some appropriate Sobolev space. We finally exemplify on several different soils, also considering a sink term representing the root water uptake.
翻译:在多孔多孔的媒体中预测水含量动态对水文应用有很大的兴趣;特别是,在裂缝和骨折出现时,利用近地动力学理论可以完成渗透处理,从而可以对空间中非地点进行适当的建模。在这个框架内,我们利用Chebyshev变形在方程的漂移部分,然后用明确的方法将之整合在一起。我们证明,拟议的光谱数字方法提供了一种解决办法,在索博列夫适当的空间里,与独特的解决办法相融合。我们最后在几个不同的土壤上进行了示范,同时也考虑了一个代表根水吸收的汇词。