We provide a unified operational framework for the study of causality, non-locality and contextuality, in a fully device-independent and theory-independent setting. We define causaltopes, our chosen portmanteau of "causal polytopes", for arbitrary spaces of input histories and arbitrary choices of input contexts. We show that causaltopes are obtained by slicing simpler polytopes of conditional probability distributions with a set of causality equations, which we fully characterise. We provide efficient linear programs to compute the maximal component of an empirical model supported by any given sub-causaltope, as well as the associated causal fraction. We introduce a notion of causal separability relative to arbitrary causal constraints. We provide efficient linear programs to compute the maximal causally separable component of an empirical model, and hence its causally separable fraction, as the component jointly supported by certain sub-causaltopes. We study causal fractions and causal separability for several novel examples, including a selection of quantum switches with entangled or contextual control. In the process, we demonstrate the existence of "causal contextuality", a phenomenon where causal inseparability is clearly correlated to, or even directly implied by, non-locality and contextuality.
翻译:我们为在完全独立和理论独立的环境中研究因果关系、非地点性和背景质量提供了一个统一的操作框架。我们定义了因果结构、我们选择的“因果多端”的门托式、任意输入史空间和任意选择输入背景。我们显示,因果结构是通过用一系列因果方程式来分解有条件概率分布的简单多端式获得的,我们完全具有特性。我们为几个新颖的例子提供了高效的线性程序,包括选择由任何特定的子焦耳素素以及相关的因果分解所支持的经验模型的最大组成部分。我们引入了与任意因果制约相对的因果分离概念。我们提供了高效的线性程序,以计算一个实验模型的最大因果性、因果和任意选择的因果分离部分,从而得出其因果分化部分,作为由某些次因果方程式共同支持的部分。我们为几个新颖的例子研究因果分数和因果分离性,包括选择由任何特定的相纠结或背景控制的量质切开关开关开关开关器。在这一过程中,我们甚至以隐含的因果关系或因果关系为背景证明存在“直接的因果关系的因果关系的因果关系”的因果关系。</s>