We present a novel reduced-order pressure stabilization strategy based on continuous data assimilation(CDA) for two-dimensional incompressible Navier-Stokes equations. A feedback control term is incorporated into pressure-correction projection method to derive the Galerkin projection-based CDA proper orthogonal decomposition reduced order model(POD-ROM) that uses pressure modes as well as velocity's simultaneously to compute the reduced-order solutions. The greatest advantage over this ROM is circumventing the standard discrete inf-sup condition for the mixed POD velocity-pressure spaces with the help of CDA which also guarantees the high accuracy of reduced-order solutions; moreover, the classical projection method decouples reduced-order velocity and pressure, which further enhances computational efficiency. Unconditional stability and convergence over POD modes(up to discretization error) are presented, and a benchmark test is performed to validate the theoretical results.


翻译:压力稳定的连续数据同化降阶模型 翻译后的摘要: 我们提出一种新颖的压力稳定策略,基于连续数据同化 (CDA),用于二维不可压 Navier-Stokes 方程。通过将反馈控制项嵌入到压力修正投影方法中,导出了基于 Galerkin 投影的 CDA Proper Orthogonal Decomposition 降阶模型 (POD-ROM),该模型同时使用压力模式和速度模式计算降阶解。相比其他 ROM,最大的优势是避免了使用CDA绕过混合POD速度-压力空间标准离散inf-sup条件,而CDA还保证了降阶解的高精度;此外,经典投影方法将速度和压力降阶结果解藕,进一步提高了计算效率。我们提供了POD模态上无条件稳定性和收敛性(直至离散误差),并进行了基准测试来验证理论结果。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
42+阅读 · 2020年12月18日
MIT新书《强化学习与最优控制》
专知会员服务
276+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
R工程化—Rest API 之plumber包
R语言中文社区
11+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月22日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
R工程化—Rest API 之plumber包
R语言中文社区
11+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员