We introduce an information measure, termed clarity, motivated by information entropy, and show that it has intuitive properties relevant to dynamic coverage control and informative path planning. Clarity defines the quality of the information we have about a variable of interest in an environment on a scale of [0, 1], and has useful properties for control and planning such as: (I) clarity lower bounds the expected estimation error of any estimator, and (II) given noisy measurements, clarity monotonically approaches a level q_infty < 1. We establish a connection between coverage controllers and information theory via clarity, suggesting a coverage model that is physically consistent with how information is acquired. Next, we define the notion of perceivability of an environment under a given robotic (or more generally, sensing and control) system, i.e., whether the system has sufficient sensing and actuation capabilities to gather desired information. We show that perceivability relates to the reachability of an augmented system, and derive the corresponding Hamilton-Jacobi-Bellman equations to determine perceivability. In simulations, we demonstrate how clarity is a useful concept for planning trajectories, how perceivability can be determined using reachability analysis, and how a Control Barrier Function (CBF) based controller can dramatically reduce the computational burden.
翻译:我们引入了一种信息测量,称为“清晰度”(clarity),其动机来自信息熵,并展示了它与动态覆盖控制和信息路径规划相关的直觉性属性,清晰度将我们对环境中任意变量的信息质量定义为[0,1]的一个尺度,并具有一些有用的控制和规划属性,例如:
(I) 清晰度下界了任何估计量的预期估计误差;
(II) 在给定噪声测量的情况下,清晰度单调递增趋向于某一水平q_infty <1。
我们通过清晰度建立了覆盖控制器和信息理论之间的关系,并提出一个覆盖模型,与获取信息的物理机制相一致。接下来,我们定义了在给定机器人(或更一般的传感与控制)系统下一个环境的可感知性,即系统是否具有足够的感知和控制能力来收集所需的信息。我们展示了可感知性与扩充系统可达性之间的联系,并导出相应的Hamilton-Jacobi-Bellman方程来确定可感知性。在仿真实验中,我们演示了清晰度是轨迹规划的有用概念,如何使用可达性分析来确定可感知性,以及如何使用基于控制屏障函数的控制器大大减少计算负担。