Particle flow filters solve Bayesian inference problems by smoothly transforming a set of particles into samples from the posterior distribution. Particles move in state space under the flow of an McKean-Vlasov-Ito process. This work introduces the Variational Fokker-Planck (VFP) framework for data assimilation, a general approach that includes previously known particle flow filters as special cases. The McKean-Vlasov-Ito process that transforms particles is defined via an optimal drift that depends on the selected diffusion term. It is established that the underlying probability density - sampled by the ensemble of particles - converges to the Bayesian posterior probability density. For a finite number of particles the optimal drift contains a regularization term that nudges particles toward becoming independent random variables. Based on this analysis, we derive computationally-feasible approximate regularization approaches that penalize the mutual information between pairs of particles, and avoid particle collapse. Moreover, the diffusion plays a role akin to a particle rejuvenation approach that aims to alleviate particle collapse. The VFP framework is very flexible. Different assumptions on prior and intermediate probability distributions can be used to implement the optimal drift, and localization and covariance shrinkage can be applied to alleviate the curse of dimensionality. A robust implicit-explicit method is discussed for the efficient integration of stiff McKean-Vlasov-Ito processes. The effectiveness of the VFP framework is demonstrated on three progressively more challenging test problems, namely the Lorenz '63, Lorenz '96 and the quasi-geostrophic equations.
翻译:粒子流滤波器通过平滑地将一组粒子转变为来自后验分布的样本来解决贝叶斯推断问题。粒子在McKean-Vlasov-Ito流的状态空间下移动。本文介绍了用于数据同化的变分Fokker-Planck(VFP)框架,这是一种包含先前已知粒子流滤波器为特例的通用方法。通过所选扩散项定义转换粒子的McKean-Vlasov-Ito过程的最优漂移。建立了随着粒子集的每个成员趋于无穷,底层概率密度会收敛到贝叶斯后验概率密度的结论。对于有限数量的粒子,最优漂移包含一个正则化项,将粒子推向独立的随机变量。基于此分析,我们导出了可行的近似正则化方法,惩罚了粒子之间的互信息,避免了粒子坍塌。此外,扩散项发挥了类似于粒子复苏的作用,旨在缓解粒子坍塌。VFP框架非常灵活。可以使用先验和中间概率分布的不同假设来实现最优漂移,并应用本地化和协方差缩减以缓解维数灾难。讨论了一种强健的隐式-显式方法,用于高效计算僵硬的McKean-Vlasov-Ito过程。此外,VFP框架有三个逐步具有挑战性的测试问题,分别为Lorenz'63,Lorenz'96以及准地转流方程证明了其有效性。