A joint limit theorem for the point process of the off-diagonal entries of a sample covariance matrix $\mathbf{S}$, constructed from $n$ observations of a $p$-dimensional random vector with iid components, and the Frobenius norm of $\mathbf{S}$ is proved. In particular, assuming that $p$ and $n$ tend to infinity we obtain a central limit theorem for the Frobenius norm in the case of finite fourth moment of the components and an infinite variance stable law in the case of infinite fourth moment. Extending a theorem of Kallenberg, we establish asymptotic independence of the point process and the Frobenius norm of $\mathbf{S}$. To the best of our knowledge, this is the first result about joint convergence of a point process of dependent points and their sum in the non-Gaussian case.
翻译:用于一个样本共变矩阵($\mathbf{S}$)的离对角条目点过程的联合限值, 由对带有iid组件的美元维度随机矢量的观测($n美元)和Frobenius 规范($\mathbf{S}$) 和 $n$ 得到证明。 特别是, 假设美元和美元倾向于无限, 我们获得一个Frobenius 规范的中央限值, 前提是组件的有限第四秒和无限差异稳定法( 无限第四秒) 。 扩展了Kallenberg 的理论, 我们确立了点进程和美元Frobenius 规范($\mathbf{S}$)的无症状独立性。 据我们所知, 这是在非高加索案件中, 依赖点及其总量的点进程会共同融合的第一个结果。</s>