We provide a novel Neural Network architecture that can: i) output R-matrix for a given quantum integrable spin chain, ii) search for an integrable Hamiltonian and the corresponding R-matrix under assumptions of certain symmetries or other restrictions, iii) explore the space of Hamiltonians around already learned models and reconstruct the family of integrable spin chains which they belong to. The neural network training is done by minimizing loss functions encoding Yang-Baxter equation, regularity and other model-specific restrictions such as hermiticity. Holomorphy is implemented via the choice of activation functions. We demonstrate the work of our Neural Network on the two-dimensional spin chains of difference form. In particular, we reconstruct the R-matrices for all 14 classes. We also demonstrate its utility as an \textit{Explorer}, scanning a certain subspace of Hamiltonians and identifying integrable classes after clusterisation. The last strategy can be used in future to carve out the map of integrable spin chains in higher dimensions and in more general settings where no analytical methods are available.


翻译:我们提供了一种全新的神经网络架构,它可以:i) 为给定的量子可积自旋链输出R矩阵,ii) 在某些对称性或其他限制的假设下搜索可积哈密顿量和相应的R矩阵, iii) 探索已学习模型周围的哈密顿量空间,重构它们所属的可积自旋链族。神经网络训练通过最小化损失函数来实现,其编码Yang-Baxter方程、正则性和其他模型特定的限制,例如厄米性。通过选择激活函数来实现全纯性。我们展示了我们的神经网络在差分形式的二维自旋链上的工作。特别是,我们对所有14个类构建了R矩阵。我们还展示了它作为“浏览器”的效用,在聚类后扫描某个哈密顿量子空间并确定可积类别。这最后一种策略可以用于在更高维度和更一般的设置中雕刻可积自旋链的映射,这些设置没有可用的解析方法。

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月30日
Arxiv
0+阅读 · 2023年5月26日
Arxiv
23+阅读 · 2022年2月24日
VIP会员
相关VIP内容
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关论文
Arxiv
0+阅读 · 2023年5月30日
Arxiv
0+阅读 · 2023年5月26日
Arxiv
23+阅读 · 2022年2月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员