We provide a novel Neural Network architecture that can: i) output R-matrix for a given quantum integrable spin chain, ii) search for an integrable Hamiltonian and the corresponding R-matrix under assumptions of certain symmetries or other restrictions, iii) explore the space of Hamiltonians around already learned models and reconstruct the family of integrable spin chains which they belong to. The neural network training is done by minimizing loss functions encoding Yang-Baxter equation, regularity and other model-specific restrictions such as hermiticity. Holomorphy is implemented via the choice of activation functions. We demonstrate the work of our Neural Network on the two-dimensional spin chains of difference form. In particular, we reconstruct the R-matrices for all 14 classes. We also demonstrate its utility as an \textit{Explorer}, scanning a certain subspace of Hamiltonians and identifying integrable classes after clusterisation. The last strategy can be used in future to carve out the map of integrable spin chains in higher dimensions and in more general settings where no analytical methods are available.
翻译:我们提供了一种全新的神经网络架构,它可以:i) 为给定的量子可积自旋链输出R矩阵,ii) 在某些对称性或其他限制的假设下搜索可积哈密顿量和相应的R矩阵, iii) 探索已学习模型周围的哈密顿量空间,重构它们所属的可积自旋链族。神经网络训练通过最小化损失函数来实现,其编码Yang-Baxter方程、正则性和其他模型特定的限制,例如厄米性。通过选择激活函数来实现全纯性。我们展示了我们的神经网络在差分形式的二维自旋链上的工作。特别是,我们对所有14个类构建了R矩阵。我们还展示了它作为“浏览器”的效用,在聚类后扫描某个哈密顿量子空间并确定可积类别。这最后一种策略可以用于在更高维度和更一般的设置中雕刻可积自旋链的映射,这些设置没有可用的解析方法。