获取使用Python操作、处理、清理和处理数据集的权威手册。对于Python 3.10和pandas 1.4的更新,这个实践指南的第三版包含了实践案例研究,向您展示如何有效地解决大量数据分析问题。在此过程中,您将了解最新版本的pandas、NumPy和Jupyter。
本书涉及Python中操作、处理、清理和处理数据的具体细节。我的目标是为Python编程语言的各个部分及其面向数据的库生态系统和工具提供指导,帮助您成为一名有效的数据分析师。虽然“数据分析”在这本书的标题中,但重点是Python编程、库和工具,而不是数据分析方法。这是数据分析所需的Python编程。
在我2012年最初出版这本书之后的某个时候,人们开始用数据科学这个术语来概括从简单的描述性统计到更高级的统计分析和机器学习的一切。从那时起,用于进行数据分析(或数据科学)的Python开源生态系统也得到了显著的扩展。现在有很多其他的书专门关注这些更高级的方法。我希望本书能够为您提供充分的准备,使您能够转向更具体的领域资源。
目录内容:
Preface * Preliminaries * Python Language Basics, IPython, and Jupyter Notebooks * Built-In Data Structures, Functions, and Files * NumPy Basics: Arrays and Vectorized Computation * Getting Started with pandas * Data Loading, Storage, and File Formats * Data Cleaning and Preparation * Data Wrangling: Join, Combine, and Reshape * Plotting and Visualization
Data Aggregation and Group Operations* Time Series * Introduction to Modeling Libraries in Python * Data Analysis Examples * Advanced NumPy * More on the IPython System * Index * About the Author