Pairwise point cloud registration is a critical task for many applications, which heavily depends on finding the right correspondences from the two point clouds. However, the low overlap between the input point clouds makes the registration prone to fail, leading to mistaken overlapping and mismatched correspondences, especially in scenes where non-overlapping regions contain similar structures. In this paper, we present a unified bird's-eye view (BEV) model for jointly learning of 3D local features and overlap estimation to fulfill the pairwise registration and loop closure. Feature description based on BEV representation is performed by a sparse UNet-like network, and the 3D keypoints are extracted by a detection head for 2D locations and a regression head for heights, respectively. For overlap detection, a cross-attention module is applied for interacting contextual information of the input point clouds, followed by a classification head to estimate the overlapping region. We evaluate our unified model extensively on the KITTI dataset and Apollo-SouthBay dataset. The experiments demonstrate that our method significantly outperforms existing methods on overlap prediction, especially in scenes with small overlaps. The registration precision also achieves top performance on both datasets in terms of translation and rotation errors. Source codes will be available soon.


翻译:Pairwith点云登记是许多应用的关键任务,这在很大程度上取决于从两个点云中找到正确的对应信息。然而,输入点云之间的低重叠使得登记容易失败,导致错误的重叠和不匹配的对应信息,特别是在非重叠区域包含类似结构的场景中。在本文中,我们展示了一个统一的鸟眼视图模型,用于共同学习3D本地特征和重叠估计,以完成对称登记和循环结束。基于 BEV 表示方式的特征描述由一个稀少的类似UNet 的网络进行,3D 关键点由2D 位置的探测头和高度的回归头分别提取。对于重叠检测,一个交叉注意模块用于对输入点云的背景信息进行互动,然后用一个分类头来估计重叠区域。我们广泛评价了我们关于KITTI数据集和Apollo-SouthBay数据集的统一模型。实验表明,我们的方法大大超出了现有重叠预测方法,特别是在与小重叠的场景中。对于数据代码的翻译也将很快实现最高性能。</s>

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
27+阅读 · 2020年12月24日
Arxiv
12+阅读 · 2019年1月24日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员