Currently, the state-of-the-art methods treat few-shot semantic segmentation task as a conditional foreground-background segmentation problem, assuming each class is independent. In this paper, we introduce the concept of meta-class, which is the meta information (e.g. certain middle-level features) shareable among all classes. To explicitly learn meta-class representations in few-shot segmentation task, we propose a novel Meta-class Memory based few-shot segmentation method (MM-Net), where we introduce a set of learnable memory embeddings to memorize the meta-class information during the base class training and transfer to novel classes during the inference stage. Moreover, for the $k$-shot scenario, we propose a novel image quality measurement module to select images from the set of support images. A high-quality class prototype could be obtained with the weighted sum of support image features based on the quality measure. Experiments on both PASCAL-$5^i$ and COCO dataset shows that our proposed method is able to achieve state-of-the-art results in both 1-shot and 5-shot settings. Particularly, our proposed MM-Net achieves 37.5\% mIoU on the COCO dataset in 1-shot setting, which is 5.1\% higher than the previous state-of-the-art.


翻译:目前,最先进的方法将微粒语义分解任务作为有条件的地表-地表分解问题处理,假设每类都是独立的。在本文中,我们引入了元类概念,即所有类都可以共享的元信息(例如某些中等级特征);为了明确学习以微粒分解任务为基础的元类表示,我们建议采用基于微粒分解任务的新颖的元类记忆分解方法(MM-Net),在基础班培训期间引入一套可学习的内存嵌入,将元类信息混为一流,并在推断阶段将信息转移到新类。此外,对于美元分解情景,我们建议采用一个新的图像质量计量模块,从成套支持图像中选择图像(例如某些中等级特征),用基于微粒分解任务的支持图像特征的加权组合获得高质量的类原型。对PASAL-5美元和COCO数据集的实验表明,我们拟议的方法能够在1张地图和5MO-M-O-M-O-M-M-MS-MS-G-G-MS-MS-MS-G-MS-MS-MS-MS-MS-MS-MS-G-MS-MS-MS-MS-M-MS-MS-MS-MS-N-MS-M-M-M-MS-MS-M-M-M-M-M-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G

0
下载
关闭预览

相关内容

小样本学习(Few-Shot Learning,以下简称 FSL )用于解决当可用的数据量比较少时,如何提升神经网络的性能。在 FSL 中,经常用到的一类方法被称为 Meta-learning。和普通的神经网络的训练方法一样,Meta-learning 也包含训练过程和测试过程,但是它的训练过程被称作 Meta-training 和 Meta-testing。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Learning Dynamic Routing for Semantic Segmentation
Arxiv
8+阅读 · 2020年3月23日
Arxiv
6+阅读 · 2018年6月21日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员