Fully Homomorphic Encryption~(FHE) is a key technology enabling privacy-preserving computing. However, the fundamental challenge of FHE is its inefficiency, due primarily to the underlying polynomial computations with high computation complexity and extremely time-consuming ciphertext maintenance operations. To tackle this challenge, various FHE accelerators have recently been proposed by both research and industrial communities. This paper takes the first initiative to conduct a systematic study on the 14 FHE accelerators -- cuHE/cuFHE, nuFHE, HEAT, HEAX, HEXL, HEXL-FPGA, 100$\times$, F1, CraterLake, BTS, ARK, Poseidon, FAB and TensorFHE. We first make our observations on the evolution trajectory of these existing FHE accelerators to establish a qualitative connection between them. Then, we perform testbed evaluations of representative open-source FHE accelerators to provide a quantitative comparison on them. Finally, with the insights learned from both qualitative and quantitative studies, we discuss potential directions to inform the future design and implementation for FHE accelerators.


翻译:完全基因加密~ (FHE) 是一项有助于保密计算的关键技术。 但是,FHE的基本挑战是效率低下,这主要是由于计算复杂程度高和非常费时的密码维护操作的根本性多元计算。为了应对这一挑战,研究和工业界最近提出了各种FHE加速器。本文首先提出对14个FHE加速器 -- -- cuCHE/cuFHE、nuFHE、HEAT、HEAX、HEXL、HEXL-FPGA、100美元/times$、F1、CraterLake、BTS、ARK、FASeidon、FAB和TensorFHE进行系统的系统研究。我们首先对这些现有FHE加速器的演变轨迹进行观察,以建立它们之间的质量联系。然后,我们对有代表性的开放源FHEA加速器进行试测,以提供它们的数量比较。最后,根据从定性和定量研究获得的见解,我们讨论未来设计和FHEHEA公司执行方向。</s>

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年5月4日
Arxiv
0+阅读 · 2023年5月3日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员