The main target of retrosynthesis is to recursively decompose desired molecules into available building blocks. Existing template-based retrosynthesis methods follow a template selection stereotype and suffer from limited training templates, which prevents them from discovering novel reactions. To overcome this limitation, we propose an innovative retrosynthesis prediction framework that can compose novel templates beyond training templates. As far as we know, this is the first method that uses machine learning to compose reaction templates for retrosynthesis prediction. Besides, we propose an effective reactant candidate scoring model that can capture atom-level transformations, which helps our method outperform previous methods on the USPTO-50K dataset. Experimental results show that our method can produce novel templates for 15 USPTO-50K test reactions that are not covered by training templates. We have released our source implementation.
翻译:复古合成的主要目标是将理想分子再生分解成可用的构件。 现有的基于模板的复古合成方法遵循模板选择陈规定型, 并受到有限的培训模板的影响, 这使得它们无法发现新的反应。 为了克服这一限制, 我们提议了一个创新的复古合成预测框架, 它可以在培训模板之外形成新的模板。 据我们所知, 这是使用机器学习来合成反后合成预测反应模板的第一种方法。 此外, 我们提议了一个有效的应变候选人评分模型, 它可以捕捉原子级的变异, 这有助于我们的方法在USPTO- 50K数据集上超越先前的方法。 实验结果显示, 我们的方法可以为培训模板没有覆盖的 15 USPTO- 50K 测试反应生成新的模板。 我们发布了源的落实。