Predicting medications is a crucial task in many intelligent healthcare systems. It can assist doctors in making informed medication decisions for patients according to electronic medical records (EMRs). However, medication prediction is a challenging data mining task due to the complex relations between medical codes. Most existing studies focus on utilizing inherent relations between homogeneous codes of medical ontology graph to enhance their representations using supervised methods, and few studies pay attention to the valuable relations between heterogeneous or homogeneous medical codes from history EMRs, which further limits the prediction performance and application scenarios. Therefore, to address these limitations, this paper proposes KnowAugNet, a multi-sourced medical knowledge augmented medication prediction network which can fully capture the diverse relations between medical codes via multi-level graph contrastive learning framework. Specifically, KnowAugNet first leverages the graph contrastive learning using graph attention network as the encoder to capture the implicit relations between homogeneous medical codes from the medical ontology graph and obtains the knowledge augmented medical codes embedding vectors. Then, it utilizes the graph contrastive learning using a weighted graph convolutional network as the encoder to capture the correlative relations between homogeneous or heterogeneous medical codes from the constructed medical prior relation graph and obtains the relation augmented medical codes embedding vectors. Finally, the augmented medical codes embedding vectors and the supervised medical codes embedding vectors are retrieved and input to the sequential learning network to capture the temporal relations of medical codes and predict medications for patients.


翻译:预测药物是许多智能保健系统的一项关键任务,可以帮助医生根据电子医疗记录(EMRs)为病人作出知情的药物决定。但是,药物预测是一项具有挑战性的数据挖掘任务,因为医疗编码之间的关系复杂。大多数现有研究的重点是利用同质病本肿瘤图代码之间的内在关系,以监督方法加强他们的表述,而很少有研究关注历史EMR的多种或同质医疗编码之间的宝贵关系,这进一步限制了预测性能和应用设想。因此,为了解决这些局限性,本文件提议建立KnowAugNet,这是一个多源医疗知识增强药物预测网络,通过多级图形对比学习框架,能够充分捕捉医学编码之间的多种关系。具体地说,KnowAugNet首先利用图形关注网络的图形对比学习关系,利用图形记录网络作为编码的编码,以捕捉从医学内存的同质医学编码和内嵌医学编码之间的内在关系,然后利用图表的对比性学习,从以前的医学编码到不断建立医学编码。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【AAAI2020知识图谱论文概述】Knowledge Graphs @ AAAI 2020
专知会员服务
133+阅读 · 2020年2月13日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月16日
Arxiv
14+阅读 · 2019年11月26日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【AAAI2020知识图谱论文概述】Knowledge Graphs @ AAAI 2020
专知会员服务
133+阅读 · 2020年2月13日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员