项目名称: 功能化磁性纳米颗粒/铁电聚合物复合微球的微流方法可控制备及改性研究

项目编号: No.51272184

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 国世上

作者单位: 武汉大学

项目金额: 80万元

中文摘要: 本项目计划应用微流方法设计和制备新型磁性纳米颗粒/铁电聚合物复合微球及微球表面改性的基础研究。基于液滴的微流技术在制备功能化微球方面优势独特,首先设计流聚焦式制备沟道,利用数值仿真手段建立复合微球的多物理场耦合模型,通过微加工和软光刻等手段进行芯片制备,掌握不同参数对微球制备的影响。其次,根据低雷诺数流体的层流特性,制备出单分散性能好、尺寸均一的微米量级微球颗粒,结合微流泵阀结构精确控制微球中磁电两相的成分,研究复合微球的形貌、磁性及介电性能。最后,利用功能化基团对磁电复合微球进行表面改性,具备电场和磁场下高灵敏响应特性,成为生物兼容性优异的功能化微球。本研究将功能复合材料与微流技术结合起来,使可控制备的复合微球兼有磁性和电学性能,在外场下微球具有高度操纵灵活性和优异的生物兼容性,为多铁性复合材料在微纳材料合成、生化分析以及柔性磁电转换系统等多个领域奠定基础。

中文关键词: 磁性纳米颗粒;铁电聚合物;微流;微球;

英文摘要: This project plan to fabricate and modificate composite micro-beads using magnetic nanoparticles and ferroelectric polymers in microfluidics. Droplet-based microfluidics have great advantages for functional micro-beading processing. Firstly, we will design flow-focusing microchannels and fabricate microfluidic chips using MEMS and soft-lithography technologies. Multi-physics COMSOL software will be used for beads simulation in magnetic and electrical fields with finite element modeling (FEM) analysis. Then, micro-beads will be fabricated with controllable sizes and uniform properties in microfluidic chips. The fabrication processing will be automatically controlled by integrated polydimethylsiloxane (PDMS) valves and pumps. The morphology, magnetic and dielectric properties will be measured then. Lastly, the surface modification of micro-beads will be performed using chemical methods in order to improve the bio-compatibility. The modified composite micro-beads can be manipulated in external magnetic and electric fields with high sensitivity and flexibility. This project aim to combine the fabrication of functional composites with microfluidics and the micro-beads can be used as a carrier of cells or biochemical substances for a number of applications, such as cell culture array or targeted delivery based on magn

英文关键词: magnetic nanoparticles;ferroelectric polymers;microfluidics;micro-beads;

成为VIP会员查看完整内容
0

相关内容

《智能电网组件:功能和效益》白皮书
专知会员服务
26+阅读 · 2022年4月13日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
28+阅读 · 2020年8月8日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
1+阅读 · 2022年4月20日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
46+阅读 · 2021年10月4日
Deep Face Recognition: A Survey
Arxiv
17+阅读 · 2019年2月12日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
《智能电网组件:功能和效益》白皮书
专知会员服务
26+阅读 · 2022年4月13日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
28+阅读 · 2020年8月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员