Despite the progress of interactive image segmentation methods, high-quality pixel-level annotation is still time-consuming and laborious - a bottleneck for several deep learning applications. We take a step back to propose interactive and simultaneous segment annotation from multiple images guided by feature space projection. This strategy is in stark contrast to existing interactive segmentation methodologies, which perform annotation in the image domain. We show that feature space annotation achieves competitive results with state-of-the-art methods in foreground segmentation datasets: iCoSeg, DAVIS, and Rooftop. Moreover, in the semantic segmentation context, it achieves 91.5% accuracy in the Cityscapes dataset, being 74.75 times faster than the original annotation procedure. Further, our contribution sheds light on a novel direction for interactive image annotation that can be integrated with existing methodologies. The supplementary material presents video demonstrations. Code available at https://github.com/LIDS-UNICAMP/rethinking-interactive-image-segmentation.
翻译:尽管交互式图像分解方法取得了进展,但高质量的像素级像素级批注仍然费时费力,是若干深层学习应用的瓶颈。 我们从后退一步,建议从以地势投影为指南的多张图像中进行互动和同步部分注解。 这一战略与现有的交互式分解方法形成鲜明对比,后者在图像域内进行注解。 我们显示,地平面批注在地平分数据集(iCoSeg、DAVIS和Rooftop)中以最先进的方法取得了有竞争力的结果:iCoSeg、DAVIS和Rooftop。 此外,在语义分解方面,它实现了城市景数据集91.5%的精度,比最初的分解程序快74.75倍。 此外,我们的贡献为交互式图像注的新方向提供了可以与现有方法相结合的新方向。补充材料展示了视频演示。 代码可在 https://github.com/LIDS-UNICAMP/re thinkinging-interactive-image-image-image-sementmentationsment。