项目名称: 振荡压力烧结法制备高性能结构陶瓷及烧结机理研究

项目编号: No.51502120

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 一般工业技术

项目作者: 李双

作者单位: 山东理工大学

项目金额: 21万元

中文摘要: 本项目针对重大工程和极端环境对结构陶瓷强度、韧性和可靠性提出的日益苛刻的要求,拟在陶瓷材料烧结过程中施加振幅与频率可控的振荡压力,发展全新的振荡压力烧结法。区别于传统的无压烧结、热压烧结,振荡压力烧结法提供较高的烧结驱动力:(1)提高颗粒堆积密度,缩短物质扩散、迁移路径;(2)赋予材料多种烧结机制,加速致密化进程;(3)促进晶界处闭气孔的排出,降低缺陷浓度。本课题拟选择典型的固相烧结陶瓷氧化锆、液相烧结陶瓷氮化硅为研究对象,开展振荡压力烧结材料致密化进程、晶粒生长、缺陷消除、强韧化等的研究:采用实时位移检测系统测量粉体的致密化曲线,结合材料的晶粒尺寸变化,得到振荡压力烧结陶瓷的MSC曲线和烧结动力学窗口;研究振荡压力振幅、频率对陶瓷微观结构与宏观性能的作用规律,优化烧结工艺参数。本项目的实施,可以深入揭示振荡压力烧结规律和烧结机理,为高密度、细晶粒、低缺陷、高强度结构陶瓷的制备奠定基础。

中文关键词: 烧结原理;致密化过程;晶粒生长可控;力学性能;动力学窗口

英文摘要: With the advancement of major projects and extreme serving conditions, the mechanical performances of structural ceramics, such as strength, toughness and reliability, are becoming daily more important. Here, a novel oscillatory pressure sintering (OPS) was proposed, by applying an oscillatory pressure with controllable value and frequency during sintering. In this work, we chosen zirconia and silicon nitride as object, and investigated their densification, grain growth, defect removal, strength and toughness under OPS process. The densification route was obtained from the measuring-displacement system. Such route, as well as the variation of grain size, could provide us with the Master Sintering Curve (MSC) and kinetic Windows of OPS. The effect of pressure value and frequency on the microstructure and mechanical behaviors was investigated in detail, so as to achieve optimized technological parameters. Thus, this work could reveal the sintering mechanisms of OPS process, and build the basis for preparing advanced structure ceramics with high density, fine grains, little defects and excellent strength.

英文关键词: Sintering mechanism;Densification;Grain growth;Mechanical properties;Kinetic window

成为VIP会员查看完整内容
0

相关内容

深度生成模型综述
专知会员服务
51+阅读 · 2022年1月2日
专知会员服务
55+阅读 · 2021年10月4日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
109+阅读 · 2021年4月7日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
23+阅读 · 2021年1月30日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
仅1.1克重,最快的软跳跃机器人Made in China!
学术头条
0+阅读 · 2021年12月8日
手把手教你,19步从石头里抠出一块CPU
新智元
0+阅读 · 2021年11月16日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Synthesizing Informative Training Samples with GAN
Arxiv
0+阅读 · 2022年4月15日
Arxiv
14+阅读 · 2021年3月10日
Arxiv
11+阅读 · 2018年4月25日
小贴士
相关主题
相关VIP内容
深度生成模型综述
专知会员服务
51+阅读 · 2022年1月2日
专知会员服务
55+阅读 · 2021年10月4日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
109+阅读 · 2021年4月7日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
23+阅读 · 2021年1月30日
相关资讯
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
仅1.1克重,最快的软跳跃机器人Made in China!
学术头条
0+阅读 · 2021年12月8日
手把手教你,19步从石头里抠出一块CPU
新智元
0+阅读 · 2021年11月16日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员