In online learning from non-stationary data streams, it is necessary to learn robustly to outliers and to adapt quickly to changes in the underlying data generating mechanism. In this paper, we refer to the former attribute of online learning algorithms as robustness and to the latter as adaptivity. There is an obvious tradeoff between the two attributes. It is a fundamental issue to quantify and evaluate the tradeoff because it provides important information on the data generating mechanism. However, no previous work has considered the tradeoff quantitatively. We propose a novel algorithm called the stochastic approximation-based robustness-adaptivity algorithm (SRA) to evaluate the tradeoff. The key idea of SRA is to update parameters of distribution or sufficient statistics with the biased stochastic approximation scheme, while dropping data points with large values of the stochastic update. We address the relation between the two parameters: one is the step size of the stochastic approximation, and the other is the threshold parameter of the norm of the stochastic update. The former controls the adaptivity and the latter does the robustness. We give a theoretical analysis for the non-asymptotic convergence of SRA in the presence of outliers, which depends on both the step size and threshold parameter. Because SRA is formulated on the majorization-minimization principle, it is a general algorithm that includes many algorithms, such as the online EM algorithm and stochastic gradient descent. Empirical experiments for both synthetic and real datasets demonstrated that SRA was superior to previous methods.


翻译:在网上从非静止数据流中学习时,有必要对异常数据流进行有力的学习,并快速适应基础数据生成机制的变化。 在本文中,我们把在线学习算法以前的属性称为稳健性,而将后者称为适适切性。两种属性之间存在明显的权衡。这是量化和评价权衡关系的一个根本问题,因为它提供了数据生成机制的重要信息。然而,以往没有工作从数量上考虑取舍。我们提议了一种叫作随机近似稳健适应性亚算法(SRA)的新算法,以评价交易。SRA的主要想法是更新分布参数或足够的统计数据,使用偏差的随机偏差缩略近性缩略图,同时降低具有大数值的数据点。我们处理的是两个参数之间的关系:一是随机近似的分数,而另一是诊断性更新规范的临界值。我们先控制着适应性和适应性算法的稳健性。我们给出了分配参数的理论性参数,在非正切性亚程值上,而精度的直径直径对正值的缩缩缩缩性原则进行。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月19日
Robust Linear Classification from Limited Training Data
Arxiv
0+阅读 · 2021年11月19日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
Learning From Positive and Unlabeled Data: A Survey
Arxiv
5+阅读 · 2018年11月12日
Arxiv
5+阅读 · 2017年12月14日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年11月19日
Robust Linear Classification from Limited Training Data
Arxiv
0+阅读 · 2021年11月19日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
Learning From Positive and Unlabeled Data: A Survey
Arxiv
5+阅读 · 2018年11月12日
Arxiv
5+阅读 · 2017年12月14日
Arxiv
3+阅读 · 2016年2月24日
Top
微信扫码咨询专知VIP会员