Solution methods for the nonlinear partial differential equation of the Rudin-Osher-Fatemi (ROF) and minimum-surface models are fundamental for many modern applications. Many efficient algorithms have been proposed. First order methods are common. They are popular due to their simplicity and easy implementation. Some second order Newton-type iterative methods have been proposed like Chan-Golub-Mulet method. In this paper, we propose a new Newton-Krylov solver for primal-dual finite element discretization of the ROF model. The method is so simple that we just need to use some diagonal preconditioners during the iterations. Theoretically, the proposed preconditioners are further proved to be robust and optimal with respect to the mesh size, the penalization parameter, the regularization parameter, and the iterative step, essentially it is a parameter independent preconditioner. We first discretize the primal-dual system by using mixed finite element methods, and then linearize the discrete system by Newton\textquoteright s method. Exploiting the well-posedness of the linearized problem on appropriate Sobolev spaces equipped with proper norms, we propose block diagonal preconditioners for the corresponding system solved with the minimum residual method. Numerical results are presented to support the theoretical results.
翻译:Rudin- Osher- Fatemi (ROF) 和最低表面模型的非线性部分差异方程式的解决方案方法对于许多现代应用来说至关重要。 已经提出了许多高效的算法 。 第一顺序方法很常见。 它们由于简单和容易实施而很受欢迎。 已经提出了像Chan- Golub- Mulet 方法一样的第二顺序牛顿型迭代方法。 在本文中, 我们为 ROF 模型的原始- 双重有限元素分解提出了一个新的 Newton- Krylov 求解器。 这个方法非常简单, 我们只需要在迭代中使用一些对数的前提。 从理论上讲, 拟议的前提方法被进一步证明在网状大小、 惩罚性参数、 正规化参数 和迭代步骤方面是健全和最佳的。 基本上它是一个独立的参数前提。 我们首先使用混合的有限元素方法将初等- 系统分解, 然后用 牛顿\ textqutright 方法将离子系统线性系统线性化。 我们用精确的预设的线性预设的系统支持了适当的Solimalizalalalalal 。 rodustrual resm rodustrual 。 在适当的后, rodustrual resm roducal roducal roduction rog roduction res roducal rogal res pral ress ress press rogal res