Since their introduction, Brauer configuration algebras (BCAs) and their specialized messages have helped research in several fields of mathematics and sciences. This paper deals with a new perspective on using such algebras as a theoretical framework in classical cryptography and music theory. It is proved that some block cyphers define labeled Brauer configuration algebras. Particularly, the dimension of the BCA associated with a ciphertext-only attack of the Vigenere cryptosystem is given by the corresponding key's length and the captured ciphertext's coincidence index. On the other hand, historically, Bach's canons have been considered solved music puzzles. However, due to how Bach posed such canons, the question remains whether their solutions are only limited to musical issues. This paper gives alternative solutions based on the theory of Brauer configuration algebras to some of the puzzle canons proposed by Bach in his Musical Offering (BWV 1079) and the canon \^a 4 Voc: Perpetuus (BWV 1073). Specifically to the canon \^a 6 Voc (BWV 1076), canon 1 \^a2 (also known as the crab canon), and canon \^a4 Quaerendo Invenietis. These solutions are obtained by interpreting such canons as ciphertexts (via route and transposition cyphers) of some specialized Brauer messages. In particular, it is noted that the structure or form of the notes used in such canons can be described via the shape of the most used symbols in Bach's works.
翻译:暂无翻译