With emerging applications such as autonomous driving, smart cities, and smart factories, network slicing has become an essential component of 5G and beyond networks as a means of catering to a service-aware network. However, managing different network slices while maintaining quality of services (QoS) is a challenge in a dynamic environment. To address this issue, this paper leverages the heterogeneous experiences of distributed units (DUs) in ORAN systems and introduces a novel approach to ORAN slicing xApp using distributed deep reinforcement learning (DDRL). Additionally, to enhance the decision-making performance of the RL agent, a prediction rApp based on long short-term memory (LSTM) is incorporated to provide additional information from the dynamic environment to the xApp. Simulation results demonstrate significant improvements in network performance, particularly in reducing QoS violations. This emphasizes the importance of using the prediction rApp and distributed actors' information jointly as part of a dynamic xApp.
翻译:暂无翻译