Guided filter is a fundamental tool in computer vision and computer graphics which aims to transfer structure information from guidance image to target image. Most existing methods construct filter kernels from the guidance itself without considering the mutual dependency between the guidance and the target. However, since there typically exist significantly different edges in the two images, simply transferring all structural information of the guidance to the target would result in various artifacts. To cope with this problem, we propose an effective framework named deep attentional guided image filtering, the filtering process of which can fully integrate the complementary information contained in both images. Specifically, we propose an attentional kernel learning module to generate dual sets of filter kernels from the guidance and the target, respectively, and then adaptively combine them by modeling the pixel-wise dependency between the two images. Meanwhile, we propose a multi-scale guided image filtering module to progressively generate the filtering result with the constructed kernels in a coarse-to-fine manner. Correspondingly, a multi-scale fusion strategy is introduced to reuse the intermediate results in the coarse-to-fine process. Extensive experiments show that the proposed framework compares favorably with the state-of-the-art methods in a wide range of guided image filtering applications, such as guided super-resolution, cross-modality restoration, texture removal, and semantic segmentation.
翻译:向导过滤是计算机视觉和计算机图形中的基本工具,目的是将结构信息从制导图像转移到目标图像中。 多数现有方法都从制导本身构建过滤内核,而没有考虑到制导和目标之间的相互依赖性。 但是,由于两种图像中通常存在截然不同的边缘, 简单地将指导中的所有结构信息转移到目标, 会导致各种工艺品。 为了解决这个问题, 我们提议了一个有效的框架, 名为“ 深度关注引导图像过滤”, 其过滤过程可以将两个图像中包含的补充信息充分整合在一起。 具体地说, 我们建议一个关注内核学习模块, 分别从制导和目标中生成双组过滤内核, 然后通过两个图像之间的像素依赖性建模来适应性地结合它们。 与此同时, 我们提议一个多尺度的制导图像过滤模块, 以粗度至平面的方式逐步生成过滤结果。 相应地, 一个多尺度的融合战略被引入到将中间结果再利用到导导导导导导导的导导导导导导导的双向、宽度、宽度的图像测试框架, 显示为制式的正向式的反导的图像模型, 显示为制式的正向式的反向式的图像模型。 将演示式的模拟的图制式的图制式的图制式的图制式图制式的图制式的模拟式的图制式的图式的图式的模拟式式式式式的图式模型将显示为制式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图。