Graph-based multi-robot path planning (MRPP) is NP-hard to optimally solve. In this work, we propose the first low polynomial-time algorithm for MRPP achieving 1--1.5 asymptotic optimality guarantees on solution makespan for random instances under very high robot density. Specifically, on an $m_1\times m_2$ gird, $m_1 \ge m_2$, our RTH (Rubik Table with Highways) algorithm computes solutions for routing up to $\frac{m_1m_2}{3}$ robots with uniformly randomly distributed start and goal configurations with a makespan of $m_1 + 2m_2 + o(m_1)$, with high probability. Because the minimum makespan for such instances is $m_1 + m_2 - o(m_1)$, also with high probability, RTH guarantees $\frac{m_1+2m_2}{m_1+m_2}$ optimality as $m_1 \to \infty$ for random instances with up to $\frac{1}{3}$ robot density, with high probability. $\frac{m_1+2m_2}{m_1+m_2} \in (1, 1.5]$. Alongside the above-mentioned key result, we also establish: (1) for completely filled grids, i.e., $m_1m_2$ robots, any MRPP instance may be solved in polynomial time under a makespan of $7m_1 + 14m_2$, (2) for $\frac{m_1m_2}{3}$ robots, RTH solves arbitrary MRPP instances with makespan of $3m_1+4m_2 + o(m_1)$, (3) for $\frac{m_1m_2}{2}$ robots, a variation of RTH solves a random MRPP instance with the same 1-1.5 optimality guarantee, and (4) the same $\frac{m_1+2m_2}{m_1+m_2}$ optimality guarantee holds for regularly distributed obstacles at $\frac{1}{9}$ density together with $\frac{2m_1m_2}{9}$ randomly distributed robots; such settings directly map to real-world parcel sorting scenarios. In extensive numerical evaluations, RTH and its variants demonstrate exceptional scalability as compared with methods including ECBS and DDM, scaling to over $450 \times 300$ grids with $45,000$ robots, and consistently achieves makespan around $1.5$ optimal or better, as predicted by our theoretical analysis.


翻译:以图形为基础的多机器人路径规划 (MRPP) 很难优化解决 。 在这项工作中, 我们提出第一个低多元时间算法, 用于MRPP在非常高的机器人密度下为随机事件提供1- 1.5 的解决方案。 具体来说, $_ 1 美元 m_ 2 美元, $_ 1 m_ 2 gird, $% 1 1 g_ 2 ge 2 美元, 我们RTH (Rubik Table with Heways) 的算法, 以$\ c% 1 美元 美元 美元 = 1 美元 美元 美元 ; 美元 1 美元 = 2 美元 = 2 美元 美元 ; 美元 美元 2 美元 = 2 3 3 3} 机器人, 以1 美元 1 美元 + 2 美元 o 美元 。 由于最小 美元 1 美元 + m2 美元 美元 美元, 美元 美元 以 美元 以 美元 美元 的 美元 。

0
下载
关闭预览

相关内容

南大《优化方法 (Optimization Methods》课程,推荐!
专知会员服务
78+阅读 · 2022年4月3日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
52+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
kubernetes pv-controller 解析
阿里技术
0+阅读 · 2021年12月24日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Search-based Methods for Multi-Cloud Configuration
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
kubernetes pv-controller 解析
阿里技术
0+阅读 · 2021年12月24日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员