Vector Perturbation Precoding (VPP) can speed up downlink data transmissions in Large and Massive Multi-User MIMO systems but is known to be NP-hard. While there are several algorithms in the literature for VPP under total power constraint, they are not applicable for VPP under per-antenna power constraint. This paper proposes a novel, parallel tree search algorithm for VPP under per-antenna power constraint, called \emph{\textbf{TreeStep}}, to find good quality solutions to the VPP problem with practical computational complexity. We show that our method can provide huge performance gain over simple linear precoding like Regularised Zero Forcing. We evaluate TreeStep for several large MIMO~($16\times16$ and $24\times24$) and massive MIMO~($16\times32$ and $24\times 48$) and demonstrate that TreeStep outperforms the popular polynomial-time VPP algorithm, the Fixed Complexity Sphere Encoder, by achieving the extremely low BER of $10^{-6}$ at a much lower SNR.
翻译:在大型和大规模多用户MIMO系统中,VPP的文献中有一些在总功率限制下对VPP适用的算法,但根据per-antenna功率限制,这些算法不适用于VPP。本文提议在per-antenna功率限制下,为VPP(称为\emph textb{TreeStep ⁇ ),为VPP问题寻找质量优异的实用计算复杂度解决方案。我们表明,我们的方法可以在常规化ZeroForcing等简单线性线性预编码上提供巨大的性能增益。我们评估了几大MIMO~(16\timets.16美元和24\time24美元)和大型MIMO~(16\time32美元和24\time 48美元)的树搜索算法,并表明TreSSteptreStrep 超越了流行的多线性VPPLG值算法,即固定复杂度Enfricity Encoder,通过在非常低的SNRDRTUR}10BER=Q dorodudelaxnistrate Staplex dol dol dolatedlex dolate Eng dodudududududeled,通过达到极低的极的极的极的极低的极低调。