We propose a new approach to learning the subgrid-scale model effects when simulating partial differential equations (PDEs) solved by the method of lines and their representation in chaotic ordinary differential equations, based on neural ordinary differential equations (NODEs). Solving systems with fine temporal and spatial grid scales is an ongoing computational challenge, and closure models are generally difficult to tune. Machine learning approaches have increased the accuracy and efficiency of computational fluid dynamics solvers. In this approach neural networks are used to learn the coarse- to fine-grid map, which can be viewed as subgrid scale parameterization. We propose a strategy that uses the NODE and partial knowledge to learn the source dynamics at a continuous level. Our method inherits the advantages of NODEs and can be used to parameterize subgrid scales, approximate coupling operators, and improve the efficiency of low-order solvers. Numerical results using the two-scale Lorenz 96 ODE and the convection-diffusion PDE are used to illustrate this approach.
翻译:我们提出一种新的方法来学习亚电网规模模型效应,在以神经普通差异方程式(NODEs)为基础,以神经普通差异方程式(NODEs)为基础,模拟用线法解决的部分差异方程式(PDEs)及其在混乱的普通差异方程式中的代表性时,以线性平方程式(PDEs)来模拟部分差异方程式(PDEs),从而模拟亚电网规模模型效应(PDEs ) 。 使用机器学习方法提高了计算流体动态求解器的精确度和效率。 在这种方法中,神经网络用来学习粗略到细格的图,可被视为亚电网规模参数化的参数化。 我们提出了使用NODE和部分知识在连续水平上学习源动态的战略。 我们的方法继承了NODs的优势,可以用来将亚电网规模、近似组合操作器以及提高低电流解器的效率。 使用两个规模Lorenz 96 ODE和对等分分分放大PDEPDE来说明这一方法的数值结果。