Bilevel learning is a powerful optimization technique that has extensively been employed in recent years to bridge the world of model-driven variational approaches with data-driven methods. Upon suitable parametrization of the desired quantities of interest (e.g., regularization terms or discretization filters), such approach computes optimal parameter values by solving a nested optimization problem where the variational model acts as a constraint. In this work, we consider two different use cases of bilevel learning for the problem of image restoration. First, we focus on learning scalar weights and convolutional filters defining a Field of Experts regularizer to restore natural images degraded by blur and noise. For improving the practical performance, the lower-level problem is solved by means of a gradient descent scheme combined with a line-search strategy based on the Barzilai-Borwein rule. As a second application, the bilevel setup is employed for learning a discretization of the popular total variation regularizer for solving image restoration problems (in particular, deblurring and super-resolution). Numerical results show the effectiveness of the approach and their generalization to multiple tasks.


翻译:双级学习是一种强大的优化技术,近年来广泛采用这种技术来利用数据驱动的方法将模型驱动的变异方法的世界连接起来。在适当平衡所需兴趣数量(如正规化条件或离散过滤器)之后,这种方法通过解决一个嵌套优化问题,使变异模式成为制约因素,来计算最佳参数值。在这项工作中,我们考虑两种不同的双级学习案例,以解决图像恢复问题。首先,我们侧重于学习标尺重量和脉冲过滤器,确定专家常规化器的领域,以恢复因模糊和噪音而退化的自然图像。为改进实际性能,低级问题通过梯度下移计划与基于巴齐莱-博尔文规则的线性搜索战略相结合加以解决。作为第二个应用,双级设置用于学习流行的全变异调节器的离散化,以解决图像恢复问题(特别是模糊和超分辨率)。数字结果显示该方法的有效性及其对多重任务的普遍化。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
13+阅读 · 2020年8月3日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员