Nowadays, the need for causal discovery is ubiquitous. A better understanding of not just the stochastic dependencies between parts of a system, but also the actual cause-effect relations, is essential for all parts of science. Thus, the need for reliable methods to detect causal directions is growing constantly. In the last 50 years, many causal discovery algorithms have emerged, but most of them are applicable only under the assumption that the systems have no feedback loops and that they are causally sufficient, i.e. that there are no unmeasured subsystems that can affect multiple measured variables. This is unfortunate since those restrictions can often not be presumed in practice. Feedback is an integral feature of many processes, and real-world systems are rarely completely isolated and fully measured. Fortunately, in recent years, several techniques, that can cope with cyclic, causally insufficient systems, have been developed. And with multiple methods available, a practical application of those algorithms now requires knowledge of the respective strengths and weaknesses. Here, we focus on the problem of causal discovery for sparse linear models which are allowed to have cycles and hidden confounders. We have prepared a comprehensive and thorough comparative study of four causal discovery techniques: two versions of the LLC method [10] and two variants of the ASP-based algorithm [11]. The evaluation investigates the performance of those techniques for various experiments with multiple interventional setups and different dataset sizes.
翻译:暂无翻译